目录

定义

电磁感应

研究过程

电与磁

电磁场
中文名
电磁场
外文名
electromagnetic field
本 质
一种由带电物体产生的一种物理场
电磁场是有内在联系、相互依存的电场和磁场的统一体的总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。
电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光 速向四周传播,形成电磁波。电磁场是电磁作用的媒介,具有能量和动量,是物质的一种存在形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。
因磁通量变化产生感应电动势的现象:闭合电路的一部分导体在磁场里做切割磁力线的运动时,导体中就会产生电流,这种现象叫电磁感应定律 。 1820年H.C.奥斯特发现电流磁效应后,许多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,1822年D.F.J.阿喇戈和A.von洪堡在测量地磁强度时,偶然发现金属对附近磁针的振荡有阻尼作用。1824年,阿喇戈根据这个现象做了铜盘实验,发现转动的铜盘会带动上方自由悬挂的磁针旋转,但磁针的旋转与铜盘不同步,稍滞后。电磁阻尼和电磁驱动是最早发现的电磁感应现象,但由于没有直接表现为感应电流,当时未能予以说明 。
感应电流产生的条件
① 电路是闭合且通着的; ②穿过闭合电路的磁通量发生变化;(如果缺少一个条件,就不会有感应电流产生)。
M.法拉第提出的电磁感应定律表明,磁场的变化要产生电场。这个电场与来源于库仑定律的电场不同,它可以推动电流在闭合导体回路中流动,即其环路积分可以不为零,成为感应电动势。现代大量应用的电力设备和发电机、变压器等都与电 磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。
磁感应现象是电磁学中最重大的发现之一,它揭示了电、磁现象之间的相互联系。法拉第电磁感应定律的重要意义在于,一方面,依据电磁感应的原理,人们制造出了发电机,电能的大规模生产和远距离输送成为可能;另一方面,电磁感应现象在电工技术、电子技术以及电磁测量等方面都有广泛的应用。
电磁感应定律
继法拉第电磁感应定律之后,J.C.麦克斯韦提出了位移电流概念。电位移来源于电介质中的带电粒子在电场中受到电场力的作用。这些带电粒子虽然不能自由流动,但要发生原子尺度上的微小位移。麦克斯韦将这个名词推广到真空中的电场,并且认为;电位移随时间变化也要产生磁场,因而称一面积上电通量的时间变化率为位移电流,而电位移矢量D的时间导数(即дD/дt)为位移电流密度。它在安 培环路定律中,除传导电流之外补充了位移电流的作用,从而总结出完整的电磁方程组,即著名的麦克斯韦方程组,描述了电磁场的分布变化规律。
麦克斯韦方程
电磁辐射麦克斯韦方程表明,不仅磁场的变化要产生电场,而且电场的变化也要产生磁场。时变场在这种相互作用下,产生电磁辐射,即为电磁波。这种电磁波从场源处以光速向周围传播,在空间各处按照距场源的远近有相应的时间滞后现象。电磁波还有一个重要特点,它的场矢量中有与场源至观察点间的距离成反比的分量。这些 分量在空间传播时的衰减远较恒定场为小。按照坡印廷定理,电磁波在传播中携有能量,可以作为信息的载体。这就为无线电通信、广播、电视、遥感等技术开阔了道路。似稳电磁场时变场中不同于静态场的上述一些现象,其显著程度都与频率的高低及设备的尺寸紧密相关。按照实际需要,在容许的近似范围内,对时变场的部分过程可以当作恒定场处理,称之为似稳电磁场或准静态场。这种方法使分析工作大为简化,在电工技术中是行之有效的方法,已为人们所广泛采用。
交变电磁场与瞬变电磁场
时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场。对它们的研究在目的上和方法上有一些各自的特点。交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多。瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或 时序展开等方法进行分析。
从科学的角度来说,电磁波是能量的一种,凡是能够释出能量的物体,都会释出电磁波。 电与磁可说是一体两面,变动的电会产生磁,变动的磁则会产生电。电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,而其每秒钟变动的次数便是频率。当电磁波频率低时,主要藉由有形的导电体才能传递;当频率渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。举例来说,太阳与地球之间的距离非常遥远,但在户外时,我们仍然能感受到和煦阳光的光与热,这就好比是「电磁辐射藉由辐射现象传递能量」的原理一样。
目录
定义
电磁感应
研究过程
电与磁